\(\int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx\) [103]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 139 \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\frac {a^3 c \log (\cos (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}-\frac {a^2 c \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {a c (a+a \sec (e+f x))^{3/2} \tan (e+f x)}{2 f \sqrt {c-c \sec (e+f x)}} \]

[Out]

-1/2*a*c*(a+a*sec(f*x+e))^(3/2)*tan(f*x+e)/f/(c-c*sec(f*x+e))^(1/2)+a^3*c*ln(cos(f*x+e))*tan(f*x+e)/f/(a+a*sec
(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)-a^2*c*(a+a*sec(f*x+e))^(1/2)*tan(f*x+e)/f/(c-c*sec(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3991, 3990, 3556} \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\frac {a^3 c \tan (e+f x) \log (\cos (e+f x))}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {a^2 c \tan (e+f x) \sqrt {a \sec (e+f x)+a}}{f \sqrt {c-c \sec (e+f x)}}-\frac {a c \tan (e+f x) (a \sec (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sec (e+f x)}} \]

[In]

Int[(a + a*Sec[e + f*x])^(5/2)*Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(a^3*c*Log[Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) - (a^2*c*Sqrt[a +
 a*Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[c - c*Sec[e + f*x]]) - (a*c*(a + a*Sec[e + f*x])^(3/2)*Tan[e + f*x])/(2
*f*Sqrt[c - c*Sec[e + f*x]])

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3990

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(m_), x_Symbol] :> Dist
[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])), Int[Cot[e + f*x]^(2*m)
, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2]

Rule 3991

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp
[2*a*c*Cot[e + f*x]*((c + d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[c, Int[Sq
rt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d,
0] && EqQ[a^2 - b^2, 0] && GtQ[n, 1/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {a c (a+a \sec (e+f x))^{3/2} \tan (e+f x)}{2 f \sqrt {c-c \sec (e+f x)}}+a \int (a+a \sec (e+f x))^{3/2} \sqrt {c-c \sec (e+f x)} \, dx \\ & = -\frac {a^2 c \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {a c (a+a \sec (e+f x))^{3/2} \tan (e+f x)}{2 f \sqrt {c-c \sec (e+f x)}}+a^2 \int \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)} \, dx \\ & = -\frac {a^2 c \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {a c (a+a \sec (e+f x))^{3/2} \tan (e+f x)}{2 f \sqrt {c-c \sec (e+f x)}}-\frac {\left (a^3 c \tan (e+f x)\right ) \int \tan (e+f x) \, dx}{\sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \\ & = \frac {a^3 c \log (\cos (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}-\frac {a^2 c \sqrt {a+a \sec (e+f x)} \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {a c (a+a \sec (e+f x))^{3/2} \tan (e+f x)}{2 f \sqrt {c-c \sec (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.52 \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=-\frac {a^3 c \left (-2 \log (\cos (e+f x))+4 \sec (e+f x)+\sec ^2(e+f x)\right ) \tan (e+f x)}{2 f \sqrt {a (1+\sec (e+f x))} \sqrt {c-c \sec (e+f x)}} \]

[In]

Integrate[(a + a*Sec[e + f*x])^(5/2)*Sqrt[c - c*Sec[e + f*x]],x]

[Out]

-1/2*(a^3*c*(-2*Log[Cos[e + f*x]] + 4*Sec[e + f*x] + Sec[e + f*x]^2)*Tan[e + f*x])/(f*Sqrt[a*(1 + Sec[e + f*x]
)]*Sqrt[c - c*Sec[e + f*x]])

Maple [A] (verified)

Time = 2.24 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.98

method result size
default \(-\frac {a^{2} \sqrt {-c \left (\sec \left (f x +e \right )-1\right )}\, \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \left (2 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right ) \cot \left (f x +e \right )+2 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \cot \left (f x +e \right )-2 \cot \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-3 \cot \left (f x +e \right )-4 \csc \left (f x +e \right )-\sec \left (f x +e \right ) \csc \left (f x +e \right )\right )}{2 f}\) \(136\)
risch \(\frac {a^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (-i {\mathrm e}^{4 i \left (f x +e \right )} \ln \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right )-{\mathrm e}^{4 i \left (f x +e \right )} f x -2 i {\mathrm e}^{2 i \left (f x +e \right )} \ln \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right )-2 \,{\mathrm e}^{4 i \left (f x +e \right )} e -2 \,{\mathrm e}^{2 i \left (f x +e \right )} f x +4 i {\mathrm e}^{3 i \left (f x +e \right )}-i \ln \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right )+2 i {\mathrm e}^{2 i \left (f x +e \right )}+4 i {\mathrm e}^{i \left (f x +e \right )}-4 \,{\mathrm e}^{2 i \left (f x +e \right )} e -f x -2 e \right )}{\left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}\) \(264\)

[In]

int((a+a*sec(f*x+e))^(5/2)*(c-c*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*a^2*(-c*(sec(f*x+e)-1))^(1/2)*(a*(sec(f*x+e)+1))^(1/2)*(2*ln(-cot(f*x+e)+csc(f*x+e)-1)*cot(f*x+e)+2*ln(
-cot(f*x+e)+csc(f*x+e)+1)*cot(f*x+e)-2*cot(f*x+e)*ln(2/(cos(f*x+e)+1))-3*cot(f*x+e)-4*csc(f*x+e)-sec(f*x+e)*cs
c(f*x+e))

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 420, normalized size of antiderivative = 3.02 \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\left [\frac {{\left (5 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + {\left (a^{2} \cos \left (f x + e\right )^{2} + a^{2} \cos \left (f x + e\right )\right )} \sqrt {-a c} \log \left (\frac {a c \cos \left (f x + e\right )^{4} - {\left (\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )\right )} \sqrt {-a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + a c}{2 \, \cos \left (f x + e\right )^{2}}\right )}{2 \, {\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}, \frac {{\left (5 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + 2 \, {\left (a^{2} \cos \left (f x + e\right )^{2} + a^{2} \cos \left (f x + e\right )\right )} \sqrt {a c} \arctan \left (\frac {\sqrt {a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}{a c \cos \left (f x + e\right )^{2} + a c}\right )}{2 \, {\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}\right ] \]

[In]

integrate((a+a*sec(f*x+e))^(5/2)*(c-c*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/2*((5*a^2*cos(f*x + e) + a^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e
))*sin(f*x + e) + (a^2*cos(f*x + e)^2 + a^2*cos(f*x + e))*sqrt(-a*c)*log(1/2*(a*c*cos(f*x + e)^4 - (cos(f*x +
e)^3 + cos(f*x + e))*sqrt(-a*c)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)
)*sin(f*x + e) + a*c)/cos(f*x + e)^2))/(f*cos(f*x + e)^2 + f*cos(f*x + e)), 1/2*((5*a^2*cos(f*x + e) + a^2)*sq
rt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*sin(f*x + e) + 2*(a^2*cos(f*x +
e)^2 + a^2*cos(f*x + e))*sqrt(a*c)*arctan(sqrt(a*c)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x +
e) - c)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)/(a*c*cos(f*x + e)^2 + a*c)))/(f*cos(f*x + e)^2 + f*cos(f*x + e
))]

Sympy [F(-1)]

Timed out. \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(f*x+e))**(5/2)*(c-c*sec(f*x+e))**(1/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 710 vs. \(2 (125) = 250\).

Time = 0.40 (sec) , antiderivative size = 710, normalized size of antiderivative = 5.11 \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=-\frac {{\left ({\left (f x + e\right )} a^{2} \cos \left (4 \, f x + 4 \, e\right )^{2} + 4 \, {\left (f x + e\right )} a^{2} \cos \left (2 \, f x + 2 \, e\right )^{2} + {\left (f x + e\right )} a^{2} \sin \left (4 \, f x + 4 \, e\right )^{2} + 4 \, {\left (f x + e\right )} a^{2} \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, {\left (f x + e\right )} a^{2} \cos \left (2 \, f x + 2 \, e\right ) + {\left (f x + e\right )} a^{2} + 2 \, a^{2} \sin \left (2 \, f x + 2 \, e\right ) - {\left (a^{2} \cos \left (4 \, f x + 4 \, e\right )^{2} + 4 \, a^{2} \cos \left (2 \, f x + 2 \, e\right )^{2} + a^{2} \sin \left (4 \, f x + 4 \, e\right )^{2} + 4 \, a^{2} \sin \left (4 \, f x + 4 \, e\right ) \sin \left (2 \, f x + 2 \, e\right ) + 4 \, a^{2} \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, a^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2} + 2 \, {\left (2 \, a^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2}\right )} \cos \left (4 \, f x + 4 \, e\right )\right )} \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right ) + 2 \, {\left (2 \, {\left (f x + e\right )} a^{2} \cos \left (2 \, f x + 2 \, e\right ) + {\left (f x + e\right )} a^{2} + a^{2} \sin \left (2 \, f x + 2 \, e\right )\right )} \cos \left (4 \, f x + 4 \, e\right ) - 4 \, {\left (a^{2} \sin \left (4 \, f x + 4 \, e\right ) + 2 \, a^{2} \sin \left (2 \, f x + 2 \, e\right )\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 4 \, {\left (a^{2} \sin \left (4 \, f x + 4 \, e\right ) + 2 \, a^{2} \sin \left (2 \, f x + 2 \, e\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 2 \, {\left (2 \, {\left (f x + e\right )} a^{2} \sin \left (2 \, f x + 2 \, e\right ) - a^{2} \cos \left (2 \, f x + 2 \, e\right )\right )} \sin \left (4 \, f x + 4 \, e\right ) + 4 \, {\left (a^{2} \cos \left (4 \, f x + 4 \, e\right ) + 2 \, a^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 4 \, {\left (a^{2} \cos \left (4 \, f x + 4 \, e\right ) + 2 \, a^{2} \cos \left (2 \, f x + 2 \, e\right ) + a^{2}\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt {a} \sqrt {c}}{{\left (2 \, {\left (2 \, \cos \left (2 \, f x + 2 \, e\right ) + 1\right )} \cos \left (4 \, f x + 4 \, e\right ) + \cos \left (4 \, f x + 4 \, e\right )^{2} + 4 \, \cos \left (2 \, f x + 2 \, e\right )^{2} + \sin \left (4 \, f x + 4 \, e\right )^{2} + 4 \, \sin \left (4 \, f x + 4 \, e\right ) \sin \left (2 \, f x + 2 \, e\right ) + 4 \, \sin \left (2 \, f x + 2 \, e\right )^{2} + 4 \, \cos \left (2 \, f x + 2 \, e\right ) + 1\right )} f} \]

[In]

integrate((a+a*sec(f*x+e))^(5/2)*(c-c*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-((f*x + e)*a^2*cos(4*f*x + 4*e)^2 + 4*(f*x + e)*a^2*cos(2*f*x + 2*e)^2 + (f*x + e)*a^2*sin(4*f*x + 4*e)^2 + 4
*(f*x + e)*a^2*sin(2*f*x + 2*e)^2 + 4*(f*x + e)*a^2*cos(2*f*x + 2*e) + (f*x + e)*a^2 + 2*a^2*sin(2*f*x + 2*e)
- (a^2*cos(4*f*x + 4*e)^2 + 4*a^2*cos(2*f*x + 2*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*a^2*sin(4*f*x + 4*e)*sin(2*f
*x + 2*e) + 4*a^2*sin(2*f*x + 2*e)^2 + 4*a^2*cos(2*f*x + 2*e) + a^2 + 2*(2*a^2*cos(2*f*x + 2*e) + a^2)*cos(4*f
*x + 4*e))*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1) + 2*(2*(f*x + e)*a^2*cos(2*f*x + 2*e) + (f*x + e)*a
^2 + a^2*sin(2*f*x + 2*e))*cos(4*f*x + 4*e) - 4*(a^2*sin(4*f*x + 4*e) + 2*a^2*sin(2*f*x + 2*e))*cos(3/2*arctan
2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 4*(a^2*sin(4*f*x + 4*e) + 2*a^2*sin(2*f*x + 2*e))*cos(1/2*arctan2(sin
(2*f*x + 2*e), cos(2*f*x + 2*e))) + 2*(2*(f*x + e)*a^2*sin(2*f*x + 2*e) - a^2*cos(2*f*x + 2*e))*sin(4*f*x + 4*
e) + 4*(a^2*cos(4*f*x + 4*e) + 2*a^2*cos(2*f*x + 2*e) + a^2)*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e
))) + 4*(a^2*cos(4*f*x + 4*e) + 2*a^2*cos(2*f*x + 2*e) + a^2)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*
e))))*sqrt(a)*sqrt(c)/((2*(2*cos(2*f*x + 2*e) + 1)*cos(4*f*x + 4*e) + cos(4*f*x + 4*e)^2 + 4*cos(2*f*x + 2*e)^
2 + sin(4*f*x + 4*e)^2 + 4*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*sin(2*f*x + 2*e)^2 + 4*cos(2*f*x + 2*e) + 1)*
f)

Giac [F]

\[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\int { {\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {5}{2}} \sqrt {-c \sec \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sec(f*x+e))^(5/2)*(c-c*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (e+f x))^{5/2} \sqrt {c-c \sec (e+f x)} \, dx=\int {\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{5/2}\,\sqrt {c-\frac {c}{\cos \left (e+f\,x\right )}} \,d x \]

[In]

int((a + a/cos(e + f*x))^(5/2)*(c - c/cos(e + f*x))^(1/2),x)

[Out]

int((a + a/cos(e + f*x))^(5/2)*(c - c/cos(e + f*x))^(1/2), x)